Wednesday, December 05, 2007

Ingeniería genética/La Vida y el Cuerpo Humano (4)

en su libro "Ciencias Ambientales: Ecología y Desarrollo Sostenible", afirman: "Nuestro planeta produce suficientes alimentos para todos los seres humanos de la actualidad. La gente que sufre de hambre o desnutrición carece de dinero para comprar comida, o de tierras adecuadas para cultivar. Si por algún milagro la producción mundial de alimentos se duplicara el próximo año, la situación de casi todos los que padecen de hambre y extrema pobreza no cambiaría (...), [porque] los alimentos (...) fluyen en la dirección de la demanda, no de las necesidades nutricionales"...
    1. Algunas plantas tienen la capacidad de poder fecundarse a sí mismo: Esto es la autopolinización. Por el contrario, la polinización cruzada ocurre cuando los dos gametos (o células reproductoras), el huevo y el polen, proceden de distintos individuos. La polinización cruzada produce individuos que tienen los genes distintos de sus progenitores y por tanto serán individuos con distintas características (distinto sabor de sus frutos, por ejemplo). La autopolinización de plantas homocigotas produce individuos idénticos a los progenitores. Esto explica porqué una semilla de manzana (o casi de cualquier otro frutal) produce un árbol muy diferente del árbol que originó dicha semilla pero, en cambio, una semilla de soja origina una planta casi idéntica a su planta progenitora. No se dice "totalmente idéntica" porque de los miles de pares de genes de la planta pudiera ocurrir que algunos pares de genes fueran diferentes (heterocigotos). Tomemos un par de genes particulares y apliquemos las leyes de Mendel: Supongamos que una planta heterocigota tiene el par de genes distintos Aa y se fecunda a sí mismo por autopolinización. Entonces los descendientes pueden ser AA (25%), aa (25%) y Aa (50%):
    2. Si los individuos homocigotos (AA y aa) se vuelven a reproducir por autopolinización, sus descendientes también serán homocigotos: serán idénticos a la planta progenitora para ese par de genes.
    • Si los individuos heterocigotos (Aa) se vuelven a reproducir por autopolinización, ocurre lo mismo que antes: AA (25%), aa (25%) y Aa (50%).
    1. En conclusión, en cada generación hay el 50% de posibilidades de que la planta descendiente sea homocigota para un par de genes. Si aplicamos esto para todos los pares de genes, se obtiene estadísticamente que en 7 u 8 generaciones de autopolinización, obtenemos individuos homocigotos en todos sus genes, también llamados líneas puras. Lo bueno de ese tipo de individuos es que sus hijos serán genéticamente iguales (clones) a la planta progenitora, conservando sus características. Lo malo es que, a veces, las líneas puras presentan plantas poco vigorosas (como en el caso del maíz). En ese caso, se pueden cruzar dos líneas puras resultando un híbrido entre las líneas.
    2. Hay que tener en cuenta que las plantas que normalmente se reproducen por autopolinización (como la soja, el tomate, el pepino o el melón) se pueden reproducir por polinización cruzada de forma accidental. Las plantas que se suelen reproducir por polinización cruzada (como los frutales o el maíz) se les puede forzar a una autopolinización durante 7 u 8 generaciones seleccionando las características deseadas en los individuos de cada generación, pero esto es viable en plantas como el maíz que maduran en un año. Así se pueden generar variedades nuevas de una misma especie. En los frutales esto es muy complicado porque cada árbol plantado de semilla necesita varios años para producir los primeros frutos. Por eso, para reproducir los frutales se utiliza la técnica del injerto. En el injerto se usa un árbol plantado de semilla que hace de patrón y pone las raíces, y a éste se le acoplan ramas del árbol que deseamos reproducir. Así, un árbol pone las raíces y otro las ramas. Como las ramas son las que producen los frutos, los frutos serán genéticamente idénticos al árbol que donó la rama. O sea, casi todas las frutas que comemos y que se venden en los mercados proceden de árboles injertados y si plantamos un árbol frutal de una semilla, lo más probable será que sus frutos no se parezcan (en sabor, o tamaño, o color...) a los de la fruta de donde se obtuvo la semilla.
    3. Una mutación es una alteración repentina de un gen, que puede hacer que el individuo que tiene la mutación tenga características distintas de las esperadas. La mayoría de las mutaciones son indeseables, pero algunas presentan características benéficas. Si en una planta se produce una mutación benéfica, puede ser difícil de transmitir dicha mutación a sus descendientes, porque la mayoría de las mutaciones producen genes recesivos y, por eso, las mutaciones son difíciles de detectar. Si la planta se puede reproducir asexualmente, sin semillas (por esquejes o injertos, por ejemplo), entonces podremos reproducir ejemplares con dicha mutación. Muchas variedades de manzana, por ejemplo, se considera que fueron originados por una mutación en un árbol. A partir de ahí, se propagó la variedad injertando la rama con la mutación en otros árboles.

      Hoy día, se juega peligrosamente con los genes y es posible incrementar el número de mutaciones mediante la radiación o usando sustancias químicas (mutágenos). Incluso hay productos químicos (la colchicina) que genera plantas con cuatro juegos de cromosomas (4n), llamadas tetraploides, y que, a veces, tienen hojas, flores o frutos de mayor tamaño.

    4. La ingeniería genética permite intercambiar genes entre especies. Esto es posible porque el sistema de codificación genética es igual en todos los animales, plantas y microorganismos. Así, un trozo de ADN de un animal se puede insertar en el ADN de una planta y ello tiene perfecto sentido para la célula receptora. El resultado son variedades (de plantas o animales), que la naturaleza jamás hubiera producido y que se pretende que tengan características beneficiosas para los humanos. Estos organismos se llaman OMG (Organismos Manipulados Genéticamente) o transgénicos. Las bondades de estos organismos son discutidas por distintos grupos y objetivamente es difícil situarse en una u otra postura. Es cierto que gracias a la ingeniería genética se han producido vacunas, antibióticos y otras sustancias útiles, así como plantas resistentes a ciertos pesticidas, insectos o enfermedades, y plantas con mejoras en sus características. Sin embargo, no es posible evaluar las consecuencias de la liberación en la naturaleza de esos genes modificados artificialmente. Esto es lo que se conoce como "contaminación genética" y amenaza con hacer desaparecer algunas variedades de algunas plantas que se han conservado durante siglos. Se han detectado casos en los que bandadas de mariposas han muerto al cruzar un campo plantado con variedades de plantas transgénicas y se han documentado casos de alergias producidas por ingerir productos transgénicos. La mayoría de los consumidores europeos rechazan el consumo de productos transgénicos. Sin embargo, en España por ejemplo, se plantan variedades transgénicas con pocas trabas burocráticas. Los ecologistas opinan que se está efectuando un experimento a nivel mundial con consecuencias impredecibles y sin la posibilidad de marcha atrás. Por otra parte, los defensores de estas tecnologías suelen ser las empresas o científicos que los producen, o las que venden los pesticidas que deben usarse en esas variedades transgénicas.

      Incluso aunque sean productos realmente beneficiosos, las empresas que los producen no lo hacen por caridad sino para su propio beneficio comercial, dándose casos de empresas que venden sus semillas y los productos químicos que deben usarse con ellas y, además, con la necesidad de comprarle a ellos semillas cada año pues las semillas que se producen son estériles. En algunos casos los agricultores abusan de los productos químicos ya que éstos son inocuos para la variedad transgénica, por lo que se contaminan más aún las tierras y las aguas subterráneas. Algunos ven los OMG como la solución al hambre del mundo, pero los científicos estadounidenses Nebel y Wrigth, en su libro "Ciencias Ambientales: Ecología y Desarrollo Sostenible", afirman: "Nuestro planeta produce suficientes alimentos para todos los seres humanos de la actualidad. La gente que sufre de hambre o desnutrición carece de dinero para comprar comida, o de tierras adecuadas para cultivar. Si por algún milagro la producción mundial de alimentos se duplicara el próximo año, la situación de casi todos los que padecen de hambre y extrema pobreza no cambiaría (...), [porque] los alimentos (...) fluyen en la dirección de la demanda, no de las necesidades nutricionales". Además, afirman que "no hacen falta ciencias ni tecnologías nuevas para aliviar el hambre y al mismo tiempo promover la sostenibilidad cuando cultivamos nuestro sustento". Lo que no puede negarse es que mientras muchos países padecen desnutrición grave, en otros los alimentos sobran: Unos se tiran y otros se consumen sin medida provocando problemas de sobrepeso.

    5. Un grupo sanguíneo es una forma de clasificar los distintos tipos de sangre según los antígenos que existan en ella. Existen muchos tipos de sistemas, pero los más utilizados son dos: El sistema AB0 y el sistema Rh. Otros sistemas son el MN, Hh o Bombay, Landsteiner-Wiener y muchos otros. El sistema AB0 fue definido por el austríaco Karl Landsteiner, Nobel de Medicina en 1930, y efectúa una clasificación en 4 tipos de sangre: A, B, AB y 0 (cero). Los tipos A y B expresan cierto tipo particular de antígenos, el tipo AB expresa ambos tipos de antígenos y el tipo 0 no expresa ninguno de esos dos tipos de antígenos. Esta es la razón por la que con sangre de tipo 0 puede hacerse una transfusión a un paciente con sangre de cualquier otro tipo. Por su parte, la sangre tipo A puede usarse en pacientes A y AB, la sangre B puede usarse con pacientes B y AB y, por último, la sangre AB sólo puede usarse en pacientes AB. A parte de eso también hay que tener en cuenta el factor Rh. El sistema Rh recibe su nombre del animal donde fue identificado esta cualidad por primera vez, el Macaco rhesus. El factor Rh puede estar presente (Rh+, positivo) o ausente (Rh-, negativo) y no debe hacerse una transfusión de Rh+ a una persona con Rh-, pero sí a la inversa. Si una madre Rh- concibe un hijo Rh+, los anticuerpos de la sangre materna destruyen la sangre del hijo, lo cual se conoce como enfermedad del Rh y se trata realizando una transfusión con sangre de niños que sobrevivieron a este hecho. Con estas dos clasificaciones obtenemos que el grupo sanguíneo más frecuente en la población humana es el 0+, seguido del A-. Los tipos más raros son el AB- y el B-.

    6. Las transfusiones sanguíneas consisten en inyectar sangre a un enfermo que la necesite. Son muy utilizadas en todo tipo de operaciones médicas, utilizando, normalmente, la sangre de donantes altruistas que, con su generosidad permiten que puedan efectuarse operaciones con éxito. Sin embargo, los distintos tipos de sangre imposibilitan que estas transfusiones puedan efectuarse sin control, pues existen grupos de sangre incompatibles. Por ejemplo, los grupos sanguíneos que tienen el llamado factor Rh, o con Rh positivo (+), no pueden ser donantes de grupos sanguíneos sin ese factor, o con Rh negativo (-), mientras que sí puede efectuarse lo contrario. La siguiente tabla representa todas las compatibilidades sanguíneas:

    Tipo de Sangre
    Puede DAR a
    Puede RECIBIR de
    A+
    A+ (AB+, menos aconsejable)
    O+, O-, A+, A-
    A-
    A+, A- (AB+ y AB-, menos aconsejable)
    O-, A-
    B+
    B+ (AB+, menos aconsejable)
    O+, O-, B+, B-
    B-
    B+, B- (AB+ y AB-, menos aconsejable)
    O-, B-
    AB+
    AB+
    AB+, AB- (resto, menos aconsejable)
    AB-
    AB+, AB-
    AB- (O-, A-, B-, menos aconsejable)
    O+
    O+, A+, B+ (AB+, menos aconsejable)
    O+, O-
    O-
    TODOS (AB+ y AB-, menos aconsejable)
    O-

    O- TODOS (AB+ y AB-, menos aconsejable) O-

    Continuará:

    La herencia del grupo sanguíneo está determinado por los genes que lo controlan. El sistema AB0 tiene tres alelos posibles (tres tipos de genes): A, B y 0. Cada persona tiene dos de estos alelos heredados de su padre y de su madre respectivamente. Los alelos A y B son dominantes sobre el alelo 0, por lo que las personas con genotipo AA y A0 tendrán la sangre de tipo A y los genotipos BB y B0 corresponden a sangre tipo B. En la sangre tipo 0 es obligatorio que ambos alelos sean 00, mientras que en la sangre de tipo AB deben existir un alelo A y otro B. Por su parte, el sistema Rh es controlado por otros genes distintos con dos posibles alelos: positivo (+, factor Rh presente) y negativo (-, factor Rh ausente).

    No comments: